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Work zones versus nonwork zones: Risk factors leading to
rear-end and sideswipe collisions

Claire Silverstein, Justin Schorr, and Samer H. Hamdar

Department of Civil and Environmental Engineering, The George Washington University, Ashburn,
Virginia, USA

ABSTRACT
Tens of thousands of vehicular collisions occur annually in work
zones with nearly double the fatality risk as compared to all
collisions (work zone and nonwork zone). Due to this increase in
risk, this study’s objective is to investigate the possible causes of
work zone collisions. After reviewing previous studies, the
authors examined behavioral, environmental, and roadway
geometric factors to understand their influence on fatal collision
type for work zones and nonwork zones. Data from the National
Highway Traffic Safety Administration Fatality Analysis Reporting
System database was used for years 2010 to 2012. To analyze
the data, negative binomial regression and multinomial logit
models were utilized. A binary probit model directly compares
work zone and nonwork zone data. Results demonstrate that
rear-end and sideswipe collisions are more likely to cause
fatalities in work zones compared to nonwork zones. Clear
conditions, daylight, and straight roads increase the likelihood of
these two collision types when compared to other types such as
single-vehicle collisions. These findings suggest that Intelligent
Transportation Systems countermeasures (speed harmonization,
vehicle-to-vehicle communications) should be investigated to
encourage safer car-following and lane-changing behaviors
rather than to mitigate work zone–related infrastructure
challenges.

KEYWORDS
work zones; fatalities;
collisions; negative binomial
regression; multinomial logit;
binary probit

1. Introduction and motivation

Work zones lead to the alteration of roadway geometric characteristics and traffic-
flow conditions. Such alterations have the potential to create an unsafe driving
environment and require a heightened level of alertness and awareness in response
to dynamically changing surroundings (Milton & Mannering, 1998). The resulting
behavior is a manifestation of complex (and often unsafe) interactions between
drivers, infrastructure components, control measures, and construction workers.
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To understand these unsafe interactions, previous research has focused on under-
standing the causes of work-zone collisions (Duffy & McAvoy, 2009; Mathes,
2012). The corresponding studies have used a variety of data sets, variables, and
modeling techniques to address work-zone collision injury and fatality-risk levels.
Many of these studies utilize only one, often basic, statistical model, and output
metrics are typically presented as composite indices indicating risk level.

Owing to the importance of this research topic, the objective of this article is to
develop and compare a multinomial logit (MNL; using LIMDEP software) model
and a negative binomial (NB - using SAS 9.3 software) regression model to iden-
tify different variables affecting fatal collision type for work-zone and nonwork
zone collisions. Specifically, the authors aim to identify and focus on fatal collision
types that feature the most dramatic increase when comparing nonwork zones to
work zones (mainly rear-end and sideswipe collisions [RESS]). Data used to vali-
date both modeling techniques was provided by the Fatality Analysis Reporting
System (FARS) and features a number of environmental (time of crash, atmo-
spheric conditions), behavioral (alcohol involvement and driver distraction), and
roadway geometric (speed limit, number of lanes, road alignment) characteristics.
Because every collision in the FARS database involves a fatality, utilizing this data
allows for the exploration of the relationships between the different exogenous
parameters/variables featured in the most severe collisions. This comparative
framework provides a better indication of the models’ validity and may lead to the
identification of specific Intelligent Transportation Systems (ITS) countermeasures
to be implemented in an effort to “neutralize” the causes of the most severe types
of work-zone collisions.

To realize the stated objective, the specific research tasks to be achieved in this
study are as follows: (1) study the manner in which certain variables affect fatal col-
lision type by formulating two types of statistical models (MNL and NB), (2) look
into the validity of the MNL models by using the NB models’ results, (3) compare
the models with similar ones developed for nonwork zone collisions, and (4) based
on this comparative framework, identify potential areas in which countermeasures
can be developed to reduce the propensity for fatalities in work zones.

2. Background

According to the Federal Highway Administration (FHWA; 2013), 87,606 colli-
sions occurred in work zones across the United States in 2010. Of these work
zone–related collisions, more than 500 were fatal (nearly double the fatality rate
when observing all collisions, work zone or not; National Highway Traffic Safety
Administration [NHTSA], 2010) and more than 25,000 resulted in injuries
(FHWA, 2013). Due to the large number of work zone–related collisions—specifi-
cally those causing fatalities—it is necessary to look into ways to assess work-zone
safety and develop effective countermeasures. To realize such goal, detailed data
sets must be analyzed and pertinent variables must be identified. In many previous
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studies, specific state Department of Transportation (DOT) work-zone crash data
was utilized (Chen, 2008; Garber & Zhao, 2002; Ha & Nemeth, 1995; Harb, Rad-
wan, Yan, Pande, & Abdel-Aty, 2008; Khattak, Khattak, & Council, 2002; Khattak
& Targa, 2004; Meng, Weng, & Qu, 2010; Schrock, Ullman, Cothron, Kraus, &
Voigt, 2004; Li & Bai, 2008). Although a statewide analysis has advantages in terms
of implementation, results are specific to the area of analysis. This study aims at
using national data in the FARS database to address work-zone collision fatalities
on a broader scope. FARS also has a more standardized and consistent data set
compared to some of the other data sets used; other research has used data taken
directly from site reviews and narratives conducted by researchers that vary
depending on the researcher observing the scene and writing the report (Schrock
et al., 2004). Within the data sets selected, many combinations of variables can be
examined in relation to collisions. Some studies focus on a select number of varia-
bles (five or fewer) (Chen, 2008; Garber & Zhao, 2002; Khattak & Targa, 2004),
whereas others focus on a larger set of variables (six or more) (Chen, 2008; Harb et
al., 2008; Khattak, Khattak, & Council, 2002; Meng et al., 2010; Schrock et al.,
2004; Li & Bai, 2008). The most common variables analyzed include injury sever-
ity, lighting condition, vehicle type, roadway type, type of work zone, and presence
of countermeasures in the work zone. It is important to note that a number of pre-
vious studies suggested that further investigations into visibility (Garber & Zhao,
2002) and geometric factors (Khattak, Khattak, & Council 2002) be conducted.
Moreover, alcohol involvement and driver distraction have been looked into by
researchers as well (Bai & Li, 2006; Meng et al., 2010; Schrock et al., 2004). Based
on these suggestions and given the scope of this study, the following variables are
included by the authors from the FARS database: crash type, lighting condition,
atmospheric condition, roadway alignment, number of lanes, speed limit, alcohol
involvement, and driver distraction.

A critical component of any transportation safety study is the modeling tech-
nique. Many work-zone studies have used simple regression techniques (Chen,
2008; Garber & Zhao, 2002; Harb et al., 2008; Khattak & Targa, 2004; Meng &
Weng, 2011; Li & Bai, 2008) showing the relationship between dependent and
independent variables. Some additional modeling techniques include ordered
probit models (Khattak & Targa, 2004), Ordinary least squares (OLS) log-trans-
formed models (Khattak & Targa, 2004), NB models (Chen. 2008; Khattak, Khat-
tak, & Council 2002), chi-squared statistics (Li & Bai, 2008), Cochran-Mantel-
Haenszel (CMH) statistics (Li & Bai, 2008), conditional logistic regression (Harb
et al., 2008; Li & Bai, 2008), multiple logistic regression (Harb et al., 2008), step-
wise regression (Meng & Weng, 2011), and Poisson binomial regression (Chen,
2008). Other studies use more qualitative methods for assessing work-zone colli-
sion risk (Meng et al., 2010; Schrock et al., 2004). A qualitative approach can give
insight into collision hazard but should be used as a second form of analysis as
opposed to the primary form. To confirm the statistical significance and accuracy
of the results in this article, two types of statistical models (MNL and NB) are used
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to look into different collision-type probabilities. The findings are compared and
validated against each other. Furthermore, a binary probit model is used to com-
pare the effects of the exogenous variables on work zones and nonwork zones. The
utilization of multiple modeling techniques not only allows for comparison and
confirmation of results, but also demonstrates the types of models that generate
statistically significant results for the FARS database.

One major difference between the work-zone and nonwork zone driving sce-
nario is the frequency at which certain collision types occur. Consequently, in their
Traffic Safety Evaluation of Nighttime and Daytime Work Zones Report, the
National Cooperative Highway Research Program (NCHRP) classified a set of
work-zone collision data by collision type (National Research Council, 2008). For
the 17,228 collisions occurring in California, North Carolina, Ohio, and Washing-
ton states, daytime rear-ends accounted for 46.9% and 54.4% of the collisions in
active work zones with and without lane closures, respectively. Furthermore, side-
swipes accounted for 13.6% and 14.8% of the same type of daytime collisions,
respectively. These two types of collisions were shown to be the most common to
occur in daytime work zones. Collision type is the main focus of only a few work-
zone studies (Chen, 2008; Garber & Zhao, 2002; Meng et al., 2010; Li & Bai, 2008).
Of these, a couple focus on the severity of injury caused by different collisions
(Chen, 2008; Meng et al., 2010; Li & Bai, 2008); others look into the location of the
collision types (Garber & Zhao, 2002); and there has even been analyses on the pri-
mary factors leading to the cause of the various types of collisions (Hill, 2003).
With this said, there is a need for research that identifies conditions conducive to
the various types of fatal collisions that occur in work zones. By identifying these
conditions for the work-zone and nonwork zone scenarios, the influences of spe-
cific exogenous factors can be isolated, and a more detailed understanding of these
hazardous situations can be achieved.

The remainder of this study is organized as follows: a description of the data set
and preliminary analysis are provided in Section 3. This is followed by an explana-
tion of the modeling techniques presented in Section 4. Results of all mathematical
models for both scenarios are presented and analyzed in Section 5, and conclusions
are discussed in Section 6.

3. Data analysis

After defining the variables used in this study and the corresponding data library, a
basic exploratory data analysis is conducted in this section. The resulting prelimi-
nary findings lead to the use of the two models described in Section 4.

3.1. Definition of variables

Data for this study was provided by the FARS and included fatal collisions occur-
ring in 2010, 2011, and 2012 on all roadways in the United States (U.S. Depart-
ment of Transportation, 2014). Only collisions where all variables were provided
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(i.e., complete data points) were considered for analysis; and in total this data set
contained 856 fatal work-zone collisions along with 50,014 fatal collisions not
occurring in work zones. One drawback of this data set is the challenge faced when
trying to link collisions with the average annual daily traffic (AADT) specific to
the roadway on which the collision occurred. The inclusion of a “linking” variable
in the FARS data set would be helpful to researchers in the future. At this stage,
the variables considered for analysis are shown in Table 1. Additional details on
the description of collision type classification scheme (Table 2) may be found in
the NHTSA FARS data description report (U.S. Department of Transportation,
2014).

3.2. Preliminary data analysis

Preliminary analysis began with a compilation of collision type frequency mea-
sured across both scenarios. These results are displayed in Table 3.

Observation of Table 3 indicates a marked increase in the percentage of fatal
rear-end collisions (nearly 4 times as frequent) as well as fatal side-swipe collisions

Table 1. Exogenous variable description.

Exogenous Variable Variable Description

Precipitation/visibility (X1) Dummy variable: X1 D 0 clear; severe crosswinds, cloudy and X1 D 1 for rain;
sleet, hail; snow; fog, smog, smoke; blowing sand, soil, dirt; blowing snow

Lighting (X2) Dummy variable: X2 D 0 for daylight, dawn, dusk and X2 D 1 for dark, dark
lighted, dark-unknown lighting

Alignment (X3) Dummy variable: X3 D 0 for a straight roadway and X3 D 1 elsewhere
Alcohol involvement (X4) Dummy variable: X4 D 0 for no alcohol involvement and X4 D 1 for alcohol

involvement
Distraction (X5) Dummy variable: X5 D 0 for no driver distraction and X5 D 1 for driver

distraction
Speed limit (X6) Speed limit on the roadway
Number of lanes (X7) The number of lanes for the direction of travel in which the accident occurred

Table 2. Endogenous variable description.

Crash Type Category FARS Variable Descriptiona

No impact (Y0)b No impact
Single vehicle (Y1)b Configuration A: Right roadside departure; Configuration B: Left roadside

departure; Configuration C: Forward impact (Category I)
Rear-end (Y2)b Configuration D: Rear end (Category II)
Frontal impact (Y3)b Configuration E: Forward impact (Category II)
Sideswipe/angle (Y4)b Configuration F: Sideswipe/angle (Category II)
Different directions (Y5)b Configuration G: Head-on (Category III); Configuration H: Forward impact

(Category III); Configuration I: Sideswipe/angle (Category III)
Turning (Y6)b Configuration J: Turn across path; Configuration K: Turn into path

(Category IV)
Other (Y7)b Configuration L: Straight paths (Category V); Configuration M: Backing,

etc. (Category VI)

aRefer to U.S. Department of Transportation (2011), 243–245 for a more detailed description of categories and
configurations.

b1 if corresponding crash type occurred; 0 otherwise.
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(nearly double the frequency) when comparing work-zone collisions to those not
occurring in work zones. Results from a two sample t test conducted on the work-
zone and nonwork zone frequency numbers shows that the observed differences
between the numbers found for each collision type are statistically significant to
the 95% level of confidence; the t statistic (–2.0256) and p value (0.03115) are less
than p D .05. The increase in the occurrence of these specific collision types is an
important observation for preliminary analysis. Considering the stop-and-go
nature of traffic in work zones along with the inherent distraction of an atypical
driving scenario, there is no surprise that RESS collisions are of paramount con-
cern. Moreover, congestion can be associated with bottlenecks where the supply is
greater than the demand: a condition that is faced in work-zone lane-closure sce-
narios leading to stop-and-go congestion dynamics with higher acceleration vari-
ance (Edara, Kianfar, & Sun, 2012). This illustrates the need for additional
consideration to be given to the corresponding car-following and lane-changing
maneuvering errors (i.e., related to rear-end and side-swipe collisions, respectively)
associated with these fatal collision types. Analysis conducted in Section 5 will pay
special attention to the factors surrounding these specific collision types.

Collision types were grouped together for analytical modeling purposes, leading
to the following collision type categories: Single vehicle (SV) (includes only SV col-
lisions) and RESS (includes only RESS collisions—the two types with the highest
frequency increase in work zones); and different directions (DD) (includes all
head-on and turning collisions—both categories where vehicles are initially travel-
ing in different directions). Support for these groupings, specifically RESS colli-
sions, is derived from the literature on collisions occurring at signalized
intersections (Rodegerdts et al., 2004). Because work zones present a traffic-con-
trolled scenario, parallels can be drawn to the conditions present at four-way stop
controlled and signalized intersections. According to the FHWA report, rear-end
and angle (or side-swipe) collisions are frequently caused by sudden or unexpected
slowing, too much slowing or stopping due to turbulent traffic flow, and sudden or
unexpected slowing due to inadequate capacity—all of which are present when
dealing with a work-zone scenario (FHWA, 2013). Furthermore, suggested
improvements to mitigate these collisions include improved traffic control and
approach improvement—both of which are elaborated upon in the conclusion sec-
tion of this study. This grouping scheme is used in the following sections.

4. Modeling techniques

Multiple attempts were made in an effort to model the occurrence of the selected
collision types in terms of the previously identified variables. Due to the nature of
the data (multiple dummy variables, a limited number of observations in the
work-zone set, and a large number of different collision types), achieving a con-
verging model for either a multinomial probit or a structural equation formulation
became an exhaustive task that produced few meaningful results. In lieu of this,
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the data was modeled using a NB regression model and a MNL model for each case
(work-zone and nonwork zone collisions).

A NB regression model was used to establish the relationship between collision
type and various environmental, behavioral, and roadway geometric parameters.
This technique allows for flexibility in the type of distributions that can be ana-
lyzed, separates the assumptions of the mean from the dispersion, and is able to
model very skewed data (Hill, 2003). In Equation 1, it is assumed that the number
of collisions (Y) is the dependent variable and is independently and negative bino-
mially distributed with parameters a and li given the independent variables x1, x2,
…, xi (corresponding to the exogenous covariates defined in Table 1). The proba-
bility of the occurrence of yi number of collisions for collision type i is given as

P Y D yið ÞD G 1
a C yi
� �

G 1
a

� �
G yi C 1
� � 1

1C aλi Xi; bð Þ
� �1

a

.1¡ 1
1C aλi Xi;bð Þ

yi
(1)

where, a D dispersion parameter of NB model and li D mean number of crashes
for collision type i and is defined as

λiD E Y D yið ÞD e

Pk

jD 1

xijbj
(2)

The maximum likelihood function is used to estimate the bj coefficients. Due to
the fact that this model looks at each collision type separately and a comparative
model is required to gain additional insight and confirm regression results.

For this reason, a MNL model was developed. MNL models explain and predict
discrete choices using estimation that is based on the utility theory (Ben-Akiva &
Lerman, 1985). This model compares the probability of each of the j D 1, 2,…,Ji-1
categories (collision type for this study) to the probability of the baseline category
Ji; for this analysis, the Ji is single-vehicle collisions (SV). MNL was used to give
the likelihood of each collision type in terms of the environmental and roadway
parameters. The main advantage of this model is that it is easy to compute (as
compared to a multinomial probit model); but it is important to keep in mind that
the associated error term is logistically distributed and the model assumes the inde-
pendence of irrelevant alternatives (IIA) (Hilbe, 2011).

In the MNL model there is one vector of characteristics describing each choice
case and a set of J parameter vectors (corresponding to the collision type defined
earlier). Each J alternative has a set of K attributes (xij) (corresponding to the exog-
enous covariates defined in Table 1). In each case, respondent i’ (corresponding to
the driver who is involved in the collision) makes a choice from the J alternatives.
MNL has one parameter vector, b (weights corresponding to the exogenous
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variables). The random utility for the model is given as

U choice j for individual ið ÞD UijDbxij C eij ; jD 1; . . . ; Ji (3)

where, the random individual error terms (ei1, ei2,…, eiJ) are assumed indepen-
dently distributed, each with a value distribution described as extreme.

The general form of the MNL model is

Prob choice jð ÞD
exp bjxi

� �
XJ

qD 0
exp bjxi

� � ; jD 0; . . . ; J: (4)

where, Prob(choice j) D probability of outcome j, xi D vector of exogenous varia-
bles, and bj D coefficients found using the maximum likelihood estimation (Wash-
ington, Karlaftis, & Mannering, 2011).

Lastly, a third modeling technique is employed to further demonstrate the con-
sistency of results as well as the techniques that can be applied to the data set. A
binary probit model determines the probability for the choice of one of two out-
comes given a set of independent variables. Here, the binary probit model is used
to compare work-zone collisions and nonwork zone collisions based on the varia-
bles presented earlier. This model assumes that its error follows a normal distribu-
tion, making it easier to interpret (Dow & Endersby, 2004). The probability that a
given collision type occurs in a work zone is given as

Pr yD 1 j xið ÞD F b0Cb1x1 Cb2x2 C . . . Cbkxkð Þ (5)

where, xi D vector of exogenous variables, bj D coefficients estimated using the
maximum likelihood function, and F(.) follows a normal cumulative distribution.
The probability that a given collision type occurs in a nonwork zone is given as

Pr yD 0 j xið ÞD 1¡Pr.yD 1 j xi/ (6)

5. Numerical results and analysis

Results from the NB regressions (completed using the SAS 9.3 software) are pre-
sented in Tables 4 and 5.

In the tables mentioned above, p values less than 0.05 are considered to be statis-
tically significant (and these instances have are recognized by a superscript letter).
Given that there were many more nonwork zone collisions, it is not surprising that
results for the nonwork zone scenario are more statistically significant.

Looking first at the coefficient estimates for the work-zone scenario there are a
number of interesting observations that can be made. For the RESS collisions,
increases in the number of lanes and the speed limit lead to additional instances of
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this collision type whereas the presence of a curve, precipitation, or alcohol lead to
a decrease in this collision type. Contrary to this finding, the estimates for SV colli-
sions indicate that the presence of a curve and alcohol lead to increases in the
frequency of fatal collisions. Another article found that SV collisions are more
likely to occur with the presence of alcohol (Bai & Li, 2006). Similar results were
obtained in an additional study that found that having a curve in the roadway
increases the chances of a severe SV collision (Daniel, Dixon, & Jared, 2000). Fur-
thermore, for the DD collision type, estimates indicate that the presence of precipi-
tation as well as a decrease in the speed limit, and the absence of alcohol and driver
distraction will increase the collision type frequency.

Comparing these results with the regression model for the nonwork zone sce-
nario, the first observation that can be made is the consistency across all estimates
of the sign for each significant coefficient. This indicates that for both scenarios,
the same variables influence collision occurrence in the same manner (either posi-
tive or negative) with the only change being the magnitude of this influence. For
example, though increasing the number of lanes will lead to more RESS collisions
in both scenarios, this increase has less of an effect in the work-zone scenario
(0.1185) than it does in the nonwork zone scenario (0.3450).

Next, a MNL was computed for both scenarios. Results for the MNL model
(completed using the LIMDEP software) are presented in Tables 6 and 7 and the
goodness-of-fit statistics are presented in Table 8.

Table 4. Negative binomial regression: work-zone collisions.

Single Vehicle Rear-End/Sideswipe Different Directions

Work Zones Estimate p Value Estimate p Value Estimate p Value

Constant ¡0.7464 0.0086 ¡2.4855 <.0001 ¡0.1876 0.6202
PRECIP 0.1267 0.4738 ¡1.4155 0.0018 0.5738 0.007
LIGHT 0.1555 0.1966 ¡0.2411 0.0984 ¡0.0082 0.9602
CURVE 0.3874 0.0011 ¡1.3144 <.0001 ¡0.006 0.9745
ALCOHOL 0.5682 <.0001 ¡0.8348 <.0001 ¡0.5442 0.0071
DISTRACT 0.0425 0.7563 0.166 0.2535 ¡0.4885 0.0324
SPDLMT ¡0.0045 0.3251 0.0256 <.0001 ¡0.0208 0.0009
LANES ¡0.0841 0.1407 0.1185 0.0391 ¡0.0143 0.8564

PRECIP = Presence of precipitation; LIGHT = daylight conditions; CURVE = presence of horizontal and/or vertical curve
in the roadway; ALCOHOL = presence of driver under the influence of alcohol; DISTRACT = presence of driver dis-
traction; SPDLMT = speed limit; LANES = number of lanes. The estimates in bold have p < 0.05, showing that they
are statistically significant.

Table 3. Collision type frequency.

No Impact Single Vehicle Rear End Frontal Impact Sideswipe Head On Turning Other

Work zones
Frequency 18 366 211 3 42 139 46 31
Percent 2.10 42.76 24.65 0.35 4.91 16.24 5.37 3.62
Nonwork zones
Frequency 759 26198 3482 25 1205 9235 5113 3997
Percent 1.52 52.38 6.96 0.05 2.41 18.46 10.22 7.99
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The base case for the MNL model was that of SV collisions. Once again, p values
less than 0.05 were considered to be significant, and these instances have been
highlighted with a superscript letter. Additional fit criteria were considered for the
MNL model—for the individual variables standard error should be less than 2.00
(demonstrates that colinearity does not exist) and b/SE should be greater than
2.00. Additionally, for the model as a whole the absolute value of the log likelihood
should be less than that of the restricted log likelihood for good data (as is the case
in both models), and the chi-squared statistic should be greater than 36.12 (the
cutoff for significance on the 0.001 level for a model with 14 degrees of freedom).

Looking at the MNL model for the work-zone scenario, results indicate that for
RESS collisions the presence of darkness and a curve in the roadway have a nega-
tive correlation with the event of a collision in comparison to SV; whereas increas-
ing the number of lanes and speed limit are positively correlated with RESS
collisions when compared to SV. Additionally, there are inverse relationships for
RESS collisions and presence precipitation, daylight, the presence of a curve in the
roadway, and alcohol involvement. Moving to DD collisions, results indicate that
the presence of a curve in the roadway, alcohol, and driver distraction are less likely
to lead to a DD collision when compared to SV. These results are consistent with
those from Harb et al. (2008), who found that when alcohol is involved drivers are
more likely to have a SV collision in a work zone. The positive relationship
between increasing the number of lanes and increasing DD collisions is question-
able given the fit statistics.

Studying the nonwork zone scenarios, results for RESS collisions indicate
that the presence of precipitation, darkness, and a curve in the roadway are
less likely to be associated with this collision type in comparison to SV and
increasing the number of lanes and speed limit are more likely to be associ-
ated with a RESS collision than a SV. Additionally, the presence of a curve in
the roadway and alcohol decreases the likelihood of RESS collisions in relation
to SV. It should be noted that in another study, the likelihood of SV collisions
in work zones compared to nonwork zones increases with the occurrence of
darkness (Harb et al., 2008). This is consistent with the larger coefficient val-
ues for lighting variable in the work-zone data compared to the nonwork
zone data. Looking at DD collisions, results demonstrate that the presence of
precipitation and increasing the number of lanes are more likely to result in a
DD collision whereas the presence of darkness, a curve in the roadway, alco-
hol, driver distraction, and increasing speed limit are less likely to result in
these collisions in comparison to SV.

As was the case for the NB regression, there is a consistency in terms of the sign
of each statistically significant variable across both scenarios in the MNL model. For
example, in work-zone and nonwork zone scenarios, an increase in the number of
lanes is indicative of an increase in the number of RESS collisions (when compared
to SV); but this increase in the number of lanes has less of an effect (0.2543) for
work-zone collisions than it does for nonwork zone collisions (0.5672).
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5.1. Critical collision type: Rear end and sideswipes

As mentioned earlier, examination of frequency data for work-zone collision type
indicates a marked 20.21% increase in the number of fatal RESS collisions when
compared to nonwork zone scenarios. This finding is reinforced by the results of
another analysis that found that the percentage of RESS collisions in work zones
was considerably higher than the percentage of the same type of collisions in non-
work zones subject areas in Ohio (Ha & Nemeth, 1995). Furthermore, it has been
suggested that RESSs are the most common collision types in work zones (Garber
& Zhao, 2002). Identifying conditions that are conducive to these fatal collision
types is helpful in creating a safer driving environment.

Looking first at results from the NB model, when compared to the other fatal
collision type categories, RESS collisions are most sensitive to changes in precipita-
tion, roadway curvature, alcohol involvement, speed limit, and the number of lanes
in the work-zone scenario and changes in precipitation, roadway curvature, alco-
hol involvement, and the number of lanes in the nonwork zone scenario. Support-
ing these results, another study found that the likelihood of a severe collision in a
work zone increases with the speed limit (Khattak & Targa, 2004). Results indicat-
ing that rear-end collisions in work zones increase with higher speed limits were
also found by Meng and Weng (2011). For both scenarios, RESS collisions occur
more frequently when there is no precipitation and the roadway is straight as well
as with an increase in the number of lanes and speed limit.

Results from the MNL model for RESS collisions demonstrate complete
consistency when compared with the validation results of the NB model as
the sign of all variables is the same for all variables across both scenarios. Fur-
thermore, significant values for lighting conditions and alcohol involvement
indicate that RESS collisions occur more frequently during the day and with-
out the presence of alcohol when compared to SV collisions in work-zone and
nonwork zone scenarios.

Table 5. Negative binomial regression: nonwork zone collisions.

Single Vehicle Rear-End/Sideswipe Different Directions

Nonwork Zones Estimate p Value Estimate p Value Estimate p Value

INTERCEPT ¡0.5486 <.0001 ¡4.1871 <.0001 ¡0.4175 <.0001
PRECIP ¡0.0397 0.0581 ¡0.4058 <.0001 0.187 <.0001
LIGHT 0.1638 <.0001 0.0755 0.0159 ¡0.3373 <.0001
CURVE 0.3185 <.0001 ¡1.4005 <.0001 ¡0.4018 <.0001
ALCOHOL 0.3408 <.0001 ¡0.5282 <.0001 ¡0.6593 <.0001
DISTRACT 0.1109 <.0001 0.13 0.0013 ¡0.2868 <.0001
SPDLMT 0.0004 0.3874 0.0267 <.0001 ¡0.0086 <.0001
LANES ¡0.1583 <.0001 0.345 <.0001 0.0502 <.0001

PRECIP = Presence of precipitation; LIGHT = daylight conditions; CURVE = presence of horizontal and/or vertical curve
in the roadway; ALCOHOL = presence of driver under the influence of alcohol; DISTRACT = presence of driver dis-
traction; SPDLMT = speed limit; LANES = number of lanes. The estimates in bold have p < 0.05, showing that they
are statistically significant.
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Analysis to this point has demonstrated that, for both scenarios, RESS collisions
occur more commonly during the most basic driving conditions—daylight hours,
no precipitation, and less roadway curvature. Two previous studies have concluded
that fatal work-zone crashes are less influenced by horizontal and vertical curves

Table 6. Multinomial logit model: work zone collisions.

Rear-End/Sideswipe Different Directions

Work Zones Estimate p Value Estimate p Value

Constant ¡2.2005 0.0001 0.4767 0.3366
PRECIP ¡1.7779 0.0005 0.3946 0.1711
LIGHT ¡0.4936 0.0166 ¡0.1933 0.3512
CURVE ¡1.9244 0.0000 ¡0.4556 0.0438
ALCOHOL ¡1.5304 0.0000 ¡1.0997 0.0000
DISTRACT 0.1573 0.4865 ¡0.5342 0.0500
SPDLMT 0.0381 0.0000 ¡0.0150 0.0673
LANES 0.2543 0.0059 0.0886 0.3834
Fit Statistics Standard Error (SE) b/SE. SE b/SE
Constant 0.5469 ¡4.0240 0.4962 0.9610
PRECIP 0.5077 ¡3.5020 0.2883 1.3690
LIGHT 0.2061 ¡2.3950 0.2074 ¡0.9320
CURVE 0.3311 ¡5.8110 0.2260 ¡2.0160
ALCOHOL 0.2507 ¡6.1050 0.2340 ¡4.7000
DISTRACT 0.2261 0.6960 0.2726 ¡1.9600
SPDLMT 0.0088 4.3180 0.0082 ¡1.8290
LANES 0.0924 2.7510 0.1017 0.8720

PRECIP = Presence of precipitation; LIGHT = daylight conditions; CURVE = presence of horizontal and/or vertical curve
in the roadway; ALCOHOL = presence of driver under the influence of alcohol; DISTRACT = presence of driver dis-
traction; SPDLMT = speed limit; LANES = number of lanes. The estimates in bold have p < 0.05, showing that they
are statistically significant.

Table 7. Multinomial logit model: nonwork zone collisions.

Rear-End/Sideswipe Different Directions

Nonwork Zones Estimate p Value Estimate p Value

Constant ¡3.80873 0.00000 0.08970 0.12780
PRECIP ¡0.37456 0.00000 0.23879 0.00000
LIGHT ¡0.14177 0.00010 ¡0.54465 0.00000
CURVE ¡1.79340 0.00000 ¡0.78870 0.00000
ALCOHOL ¡0.96898 0.00000 ¡1.04456 0.00000
DISTRACT ¡0.00897 0.84810 ¡0.43345 0.00000
SPDLMT 0.02792 0.00000 ¡0.00899 0.00000
LANES 0.56725 0.00000 0.24894 0.00000
Fit Statistics Standard Error (SE) b/SE. SE b/SE
Constant 0.0936 ¡40.7000 0.0589 1.5230
PRECIP 0.0616 ¡6.0780 0.0348 6.8700
LIGHT 0.0361 ¡3.9320 0.0241 ¡22.5550
CURVE 0.0547 ¡32.7580 0.0247 ¡31.9300
ALCOHOL 0.0430 ¡22.5420 0.0271 ¡38.5410
DISTRACT 0.0468 ¡0.1920 0.0336 ¡12.8900
SPDLMT 0.0014 19.6340 0.0009 ¡10.0010
LANES 0.0167 34.0370 0.0138 18.0980

PRECIP = Presence of precipitation; LIGHT = daylight conditions; CURVE = presence of horizontal and/or vertical curve
in the roadway; ALCOHOL = presence of driver under the influence of alcohol; DISTRACT = presence of driver dis-
traction; SPDLMT = speed limit; LANES = number of lanes. The estimates in bold have p < 0.05, showing that they
are statistically significant.
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compared to nonwork zone crashes (Daniel et al., 2000; Harb et al., 2008). One of
these studies also found that collisions occur more frequently without the presence
of precipitation in work zones compared to nonwork zones (Harb et al., 2008).
Additionally, increases in speed limit and the number of lanes also increase the fre-
quency of this collision type.

Now that the conditions conducive to RESS collisions have been identified, the
next step is to compare coefficient values for all variables in both models across
both scenarios. This comparison is presented in Table 9.

Results were again consistent for both models as the variables more influential
for the work-zone scenario were identical in both statistical models (inherently the
same is true for variables influencing nonwork zone collisions).

This comparative analysis further solidifies the finding that RESS collisions
occur more frequently when there is no precipitation, during daylight condi-
tions, with limited roadway curvature, no alcohol involvement, and with
increasing number of lanes and speed limits. Additionally this comparison
indicates that clear, daylight conditions with increasing speed limits are even
more conducive to this collision type when considering work-zone conditions

Table 8. Multinomial logit model: goodness-of-fit statistics.

Likelihood Estimates Work Zones Nonwork Zones

Degrees of freedom 14 14
Chi-squared value 238.1741 8988.157
Log-likelihood function ¡736.7301 ¡36970.61
Restricted log likelihood ¡855.8171 ¡41464.69

Table 9. Rear end/sideswipe collisions: coefficient comparison.

Negative Binomial Work Zone Nonwork Zone Greater Magnitude

Constant ¡2.4855 ¡4.1871 —
PRECIP ¡1.4155 ¡0.4058 Work zone
LIGHT ¡0.2411 0.0755 Work zone
CURVE ¡1.3144 ¡1.4005 Non–work zone
ALCOHOL ¡0.8348 ¡0.5282 Work zone
DISTRACT 0.1660 0.1300 Work zone
SPDLMT 0.0256 0.0267 Non–work zone
LANES 0.1185 0.3450 Non–work zone
Multinomial logit Work Zone Non–work Zone Greater Magnitude
Constant ¡2.2005 ¡3.8087 —
PRECIP ¡1.7779 ¡0.3746 Work zone
LIGHT ¡0.4936 ¡0.1418 Work zone
CURVE ¡1.9244 ¡1.7934 Work zone
ALCOHOL ¡1.5304 ¡0.9690 Work zone
DISTRACT 0.1573 ¡0.0090 Work zone
SPDLMT 0.0381 0.0279 Work zone
LANES 0.2543 0.5672 Non–work zone

PRECIP = Presence of precipitation; LIGHT = daylight conditions; CURVE = presence of horizontal and/or vertical curve
in the roadway; ALCOHOL = presence of driver under the influence of alcohol; DISTRACT = presence of driver dis-
traction; SPDLMT = speed limit; LANES = number of lanes. The estimates in bold have p < 0.05, showing that they
are statistically significant.
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alone. Less roadway curvature and increasing number of lanes are more con-
ducive to RESS collisions when considering the nonwork zone scenario.

In an effort to further confirm these findings, a binomial probit model was
formulated (using the LIMDEP software) for all RESS collisions across work-
zone and nonwork zone scenarios. Keeping the scenario type (either work
zone or nonwork zone) as the dependent variable, model results are presented
in Table 10.

Based on the likelihood estimates the model demonstrates statistical significant
and, once again, variables with statistically significant results are displayed with a
superscript letter. Observation of the variables found to be statistically significant
in the NB and MNL models demonstrates complete consistency with the results
discussed above.

From this analysis, it becomes increasingly apparent that there exists an oppor-
tunity to develop countermeasures to help prevent fatal RESS collisions in work
zones. Considering the prominent conditions for these collisions, it appears that
the major factors leading to such collisions are the surrounding traffic control con-
ditions and the corresponding driver decision making rather than the uncontrolla-
ble environmental conditions or complicated roadway geometry. With an
increasing speed limit and/or number of lanes on a roadway, there is inherently
more traffic; and given the diminishing effects that these increases have on safety
in work-zone scenarios, potential ITS applications should be targeted at creating a
safer traffic flow conditions by encouraging safer driver maneuvers. Such ITS
applications may include speed harmonization control methods and vehicle to
vehicle communication driving assistance systems. Furthermore, results indicate
that the use of common control measures such as speed enforcement cameras may
need to be reevaluated given the marginal difference in the effect of speed limit
when comparing work-zones to nonwork zones.

Table 10. Rear end/sideswipe collisions: binary probit (BP).

BP Estimate p Value Standard Error (SE) b/SE

Constant ¡1.9208 0.0000 0.1710 ¡11.2340
PRECIP ¡0.6274 0.0004 0.1787 ¡3.5100
LIGHT ¡0.1803 0.0077 0.0676 ¡2.6670
CURVE ¡0.2894 0.0276 0.1313 ¡2.2030
ALCOHOL ¡0.1931 0.0366 0.0924 ¡2.0900
DISTRACT 0.2607 0.0004 0.0742 3.5130
SPDLMT 0.0096 0.0004 0.0027 3.5540
LANES ¡0.0564 0.0470 0.0284 ¡1.9870
Likelihood estimates
Degrees of freedom 7
Chi-squared value 69.58208
Log-likelihood function –976.6529
Restricted log likelihood –1011.444

PRECIP = Presence of precipitation; LIGHT = daylight conditions; CURVE = presence of horizontal and/or vertical curve
in the roadway; ALCOHOL = presence of driver under the influence of alcohol; DISTRACT = presence of driver dis-
traction; SPDLMT = speed limit; LANES = number of lanes. The estimates in bold have p < 0.05, showing they are
statistically significant.
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6. Conclusions and future work

In this article fatal collision types for work zones and nonwork zones were ana-
lyzed through a variety of mathematical modeling procedures. A NB regression
was carried out to examine the individual effects of exogenous variables on each
specific collision type; a MNL model was developed to confirm these results and
gain perspective on how coefficient values vary when comparing one collision type
to another; and finally a binomial probit was utilized to further solidify the findings
of this study. Statistically significant results were achieved for the majority of varia-
bles in each model presented for the work-zone and nonwork zone scenarios. By
utilizing multiple modeling techniques, the authors have worked to identify con-
verging statistical models that can be achieved with FARS data. In general, results
demonstrated that as environmental and roadway characteristics vary, so does the
propensity for the different fatal collision types.

Based on a simple frequency analysis as well as findings from previous research,
RESS collisions were identified as particularly problematic in work-zone scenarios.
For this reason, special attention was paid to fatal collisions of these two types spe-
cifically, and results demonstrated that clear, daylight conditions on straight road-
ways without the presence of alcohol are more conducive to fatal RESS collisions.
Additionally, increasing the number of lanes and speed limit increases the propen-
sity for these types of fatal collisions—indicating that the traffic flow conditions
surrounding the work zone are the major contributing factor to these specific types
of fatal collisions. Based on these findings, suggested countermeasures include
speed harmonization, vehicle-to-vehicle communication logics, the use of dynamic
message signs to update drivers on delays and alternative routes, and the imple-
mentation of temporary work-zone rumble strips (Texas Department of Transpor-
tation, 2013). Some other more conventional traffic engineering solutions include
increasing the upstream distance at the start of the work zone where cones and
barrels are placed, as well as reducing the speed limit with the help of flashing
lights. By increasing the warning distance leading up to a work zone and reducing
the number of lanes with barrels and cones, drivers will be more likely to slow
down and be less likely to be involved in a collision (National Cooperative High-
way Research Program, 2005). Additionally, adaptive traffic-calming techniques
could be applied even further upstream of the work zone in an attempt to create a
smoother transition and safer flow scenario. Future work should explore the imple-
mentation of such techniques as well as examine different ways to extend the FARS
database such that collisions can be linked with existing traffic data (such as
AADT).
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